

 LBNL-5064E

OpenADR Open Source Toolkit:
Developing Open Source Software for
the Smart Grid

Charles McParland

Computational Research Division

July 2011

Presented at the
2011 IEEE Power & Energy Society General Meeting,
Detroit, MI,
July 24-29, 2011,
and published in the Proceedings

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of
California.

 1

Abstract—Demand response (DR) is becoming an increasingly

important part of power grid planning and operation. The
advent of the Smart Grid, which mandates its use, further
motivates selection and development of suitable software
protocols to enable DR functionality. The OpenADR protocol
has been developed and is being standardized to serve this goal.
We believe that the development of a distributable, open source
implementation of OpenADR will benefit this effort and motivate
critical evaluation of its capabilities, by the wider community, for
providing wide-scale DR services.

Index Terms—OpenADR, open source, demand response.

I. INTRODUCTION
hile demand response systems have been an active area
of interest and research over the past decade, the Smart

Grid initiative, which mandates some form of demand
response load shedding [1], has spurred increased interest in
this field. One of the goals of the Smart Grid, namely, the
achievement of a common, unified and standards-driven grid
communications architecture, has motivated a closer
examination of software frameworks and protocols capable of
supporting wide-scale demand response functionality. One of
the protocols undergoing evaluation is OpenADR.

Much of the current research in demand response is focused
on relatively isolated pilot implementations. However, the
prospect of a common, grid-wide demand response protocol
requires the shared focus of a much larger and coordinated
community of experts. The open source software movement
[2] has succeeded in creating and coordinating such
“communities of interest” around efforts of similar scale (e.g.
the Linux OS). In looking at the level of analysis and effort
required to implement a truly Smart Grid–capable demand
response protocol, the open source community model can
provide both the level of skills and breadth of experience

Manuscript received November 30, 2010. This work was sponsored in part by
the Demand Response Research Center which is funded by the California
Energy Commission (Energy Commission), Public Interest Energy Research
(PIER) Program, under Work for Others Contract No. 500-03-026 and by the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

C. McParland is with the Computational Research Division, Lawrence
Berkeley National Laboratory, Berkeley CA. (Phone 510-486 6956; e-mail:
mcparland@lbl.gov).

needed to guide a new protocol into the wider grid
community. We have attempted to seed this effort by
producing an open source version of the OpenADR demand
response protocol and are in the process of packaging and
releasing it to the research community. Our goal is to provide
a common code base that can drive both innovative
experiments and formal protocol verification activities and,
ultimately facilitate ubiquitous demand response capabilities
within the emerging Smart Grid.

II. DEMAND RESPONSE ARCHITECTURES
Early demand response efforts were primarily manual in
nature. Requests to reduce demand were typically made a day
or more in advance and communicated to the end user through
fax or telephone messaging. Once received, local energy
management system set points were altered to reduce
consumption in accordance with the communicated request
and contractual requirements. There was little automation in
either the generation/distribution of the request or in effecting
an appropriate response.

In the 1990s, the growing availability of inexpensive
computing equipment and wide scale data communications
infrastructure allowed the development of systems capable of
automating both the communications and response aspects of
DR activities. From these experiments, there emerged a
conceptual view of demand response as a power grid system
behavior that could be operationally used to alter energy
demand levels in both an automated and time-bounded manner
– thus the term “automated demand response or ADR. As
demand for energy continued to approach existing generation
capacity, the importance of ADR as a key methodology for
matching energy generation capacity and demand also
increased. Figure 1 illustrates the system load “shaping”
behavior measured in a single building [3].

OpenADR Open Source Toolkit: Developing
Open Source Software for the Smart Grid

Charles McParland,

Computational Research Division,

Lawrence Berkeley National Laboratory

W

 2

Figure 1 – Automated DR Load Shaping.

III. OPENADR ARCHITECTURE
OpenADR [4] (Open Automated Demand Response) was
developed at the Demand Response Research Center [5]
(DRRC) as part of an ongoing effort to help building and
facilities managers implement automated demand response
within their facilities. It was designed to allow buildings to
invoke pre-planned demand shedding strategies quickly and
automatically when requested by utility operations. By
integrating automated building responses into everyday grid
operations, it also enabled utilities to promote commercial and
industrial participation in new power pricing programs that
leverage automated demand response behavior from end users.

Figure 2 – OpenADR Architecure.

At its core, the OpenADR architecture defines a data model
for energy cost and reliability that is common among and
relevant to an energy provider and its customers. By providing
a common data model among these parties and defining the
semantics for accessing and changing elements within this
model, energy providers and consumers can efficiently
exchange demand response requests based on both price and
grid reliability criteria.

One particular feature that differentiates OpenADR from other
automated DR architectures is that utility DR requests contain

no information about specific devices or operations that
should be curtailed or stopped. OpenADR only conveys the
utility’s request for demand reduction to the customer - either
by direct request or through distribution of increased energy
cost rate schedules that will, in turn, motivate load shedding
and reduced demand. Specific consumer-side responses to
these requests are formulated by and completely under control
of the end user. The overall result is that energy consumers
can respond to utility DR requests in ways that are most
effective and convenient for each local. In addition, the
OpenADR messaging protocol has provisions for customers to
individually respond to DR requests with an “opt out” signal –
further increasing flexibility permitted for customer response.
The end result is a system that promotes automated responses
to utility DR requests while maximizing the local flexibility
exercised in responding to those requests.

Take, for example, the case where a utility must shed load to
maintain grid stability. It knows that one or more pre-
registered clients are participating in a particular DR
“program” and that they have agreed to respond, within
certain pre-arranged limits, to utility requests to shed load over
a given time interval. The magnitude of the expected load
shed and the speed at which it can be affected are fully
specified by the specific DR “program” to which a client has
subscribed. The utility issues a request (“DR event”) to
participating clients to shed load and receives verification that
that the request has been received. Clients then begin
shedding load in keeping with pre-agreed criteria. Failure to
perform as agreed, as indicated by interval-recording revenue
meter data, will result in penalties at a later date when utility
rate charges are reconciled. An OpenADR client may
optionally indicate that it will not participate in a DR program
(“opt out”) for some period of time. While this typically does
not override a client’s obligations to comply with DR program
requests, such a response may ease the complexity of utility
dispatch operations.

A second DR use case is one in which utilities modify energy
costs in an attempt to motivate reduction in demand. In this
case, an OpenADR server can issue “price events” that
describe elevated energy costs over a particular time interval.
Participating clients can respond to these requests by shedding
load, according to the communicated schedule, and reduce
their energy costs. Conversely, some clients may decide to
accept the “opportunity costs” of higher energy rates because
local conditions require energy consumption to continue at
normal rates. Since utility back office operations are
ultimately responsible for local “time of use” readout and
revenue settlement, local DR behavior can remain relatively
independent of utility DR requests while accurate contractual
or revenue obligations can be insured.

 3

Figure 3 – Generic Roles, Event‐based Use Case.

In practice, OpenADR is implemented as a client/server
system that highly leverages design elements found in similar
successful commercial Internet designs. It is readily adapted
to widely-available Internet communications infrastructures
and, due to its hierarchical design can mirror the layered
organizations typically found in energy distribution systems –
namely utilities, aggregators, and end users. The following
diagram depicts typical OpenADR elements. (note: DRAS
acronym commonly used for Demand Response Automation
Server).

Clearly, the exchange of model data element between client
and server is critical to this design. In order to effectively
share model data between participating entities, OpenADR
defines an extensive set of XML (eXtensible Markup
Language [6]) formatted messages that describe model
element identifiers and their values. These XML-formatted
messages are used to communicate current and future energy
pricing, time of use pricing schedules and as well as explicit
demand reduction requests between the OpenADR Demand
Response Automation Server (DRAS) and its clients.

<?xml version="1.0" encoding="UTF-8" ?>
<p:eventStateprogramName="LBNL" eventModNumber="0"
 eventIdentifier="LBNL-102141" drasClientID="akua1"
 eventStateID="0" schemaVersion="1.0" drasName="DRAS 1.0"
 testEvent="false" offLine="false" xmlns:p="urn:EventState"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "urn:EventStatehttp://openadr.lbl.gov/src/1/EventState.xsd">
 <p:simpleDRModeData>
 <p:EventStatus>ACTIVE</p:EventStatus>
 <p:OperationModeValue>MODERATE</p:OperationModeValue>
 <p:currentTime>125</p:currentTime>
 <p:operationModeSchedule>
 <p:modeSlot>
 <p:OperationModeValue>MODERATE</p:OperationModeValue>
 <p:modeTimeSlot>120</p:modeTimeSlot>
 </p:modeSlot>
 </p:operationModeSchedule>
 </p:simpleDRModeData>
 <p:drEventData>
 <p:notificationTime>2009-03-26T10:25:00.0</p:notificationTime>
 <p:startTime>2009-03-26T10:27:00.0</p:startTime>
 <p:endTime>2009-03-26T10:30:00.0</p:endTime>
 </p:drEventData>

Figure 4 – Example OpenADR XML‐formatted Event.

When this common data model is widely adopted by energy
consumers, OpenADR provides the following benefits:

• Simplify and reduce DR-related costs by use of
standardized messaging formats.

• Promote interoperability between utility servers and
multi vendor clients.

• Increase customer participation and reduce operating
cost associated with manual responses to DR requests
through use of automation.

• Allow energy consumers to customize local response
to utility DR requests.

• By promoting standardized architecture and message
formatting, encourage wide-scale integration and
embedding of DR capabilities into consumer devices.

IV. PLACING OPENADR IN TO THE SMART GRID
ENVIRONMENT

The cornerstone of the Smart Grid is the requirement that data
and control communications essentially “follow” the flow of
power from the generation facility, through the distribution
automation infrastructure, into the end user facility and,
ultimately to the load itself. While much of the current power
grid head end is already extensively interconnected,
substantial effort, within the Smart Grid initiative, is being
focused on “securitizing” these grid communications against
cyber attacks.

However, at the other end of the grid – that of the power
consumer, there is little (i.e. pre-Smart Grid) communications
infrastructure. At present, new meter communications
systems (Advanced Metering Infrastructure, or AMI [7]) are
being installed across the US in order to extend grid
communications to the residential meter – the traditional
power grid/consumer demarcation boundary. Furthermore,
these new AMI systems interconnect, within the facility, with
yet another new data network – the Home Area Network
(HAN [8]) – which is intended to be the utility-connected
control network for major appliances and sub systems within a
facility or residence. While a detailed evaluation of these new
Smart Grid communications networks is beyond the scope of
the paper, it is worth discussing their potential impact on DR
architectures and implementation.

All DR architectures require some communications
mechanism for signaling load shedding requests – either
directly or, by implication, through notification of increased
rate schedules. While the communications path described
above does constitute a way to communicate between utilities
and their customers, it is just now being deployed widely
within the US and, operationally, is still in a formative stage.
AMI systems and interfaces are proprietary by design and vary
across the entire Smart Grid topology – occasionally, different
AMI systems serve customers within the same city.
Furthermore, the potential interfaces through which non AMI
messages can be injected into these systems vary widely or are
non-existent- across AMI vendors. The result is that, at this
point in time, a DR standard that targets wide-scale

 4

deployment cannot effectively reference details of these
communications channels.

As a result, successful DR protocols and standards need to
avoid explicit references to network transport layers and
should be capable of readily adapting to the communications
channels available in a given local. The most prevalent of
these channels, with market penetration of between 70% and
80% [9] is the Internet, which is typically accessed through
either broadband or DSL technologies. The OpenADR V1.0
specification, while making no explicit demands on
underlying communications layers, has been developed, tested
and successfully deployed using these standard IP (e.g.
Internet) protocols. In terms of advancing DR research in
anticipation of its wide-scale deployment, we believe that use
of existing Internet communications standards provides the
best foundation for large pilot deployments and ongoing
research. Furthermore, by focusing attention at the application
– and not the communications – level, we ensure the required
level of adaptability needed for future ubiquitous deployment
within the Smart Grid.

V. RELATIONSHIP BETWEEN OPENADR AND SMART ENERGY
PROFILE (SEP)

As mentioned earlier, the desire to control or modify energy
loads has led to a number of messaging systems, each with
their own formats and semantics. Currently, two
specifications, OpenADR and SEP (Smart Energy Profile) 2.0
[10], appear most frequently in discussions about wide scale,
automated DR architectures. Both of these are intended to
complete the standards process and be suitable candidates for
communicating DR requests between utilities and consumers.

Both OpenADR and SEP 2.0 are considered to be application-
level protocols and, as such, are focused on providing services
and functions that are relevant within their specific domain or
application area. They typically specify how to encode high
level functions, e.g. “change thermostat set point” or “here is
tomorrow’s energy price schedule”, into specific messages
and codify all legal responses to such messages during normal
operations. With few exceptions, they are not concerned
about the actual mechanics of message transmission and
reception (i.e. message transport) – those responsibilities are
left to lower level communications protocols (e.g. IP). At
their heart, application protocols are focused on describing the
behaviors of each communicating component. Each as its
origins and strengths in a particular part of power grid
operations – as described below:

OpenADR grew, in part, out of early utility-level DR
programs that communicated price and reliability information
to buildings and end users thus allowing them to reduce
demand on a voluntary basis. One of the key innovations of
OpenADR was the creation and communication of a
standardized data representation (using XML) of these pricing
and supply conditions that would allow end user control
systems to respond in an automated and timely way. As an

applications level protocol, OpenADR leveraged existing
Internet communications infrastructure. And, as the reach and
reliability of the Internet grew, so did its ability to interact
with power consuming clients over a wide geographic ares.
Like earlier manual DR programs, end users still defined the
manner in which they responded to these signals, but the
OpenADR protocol allowed truly automated response to DR
signals.

SEP 2.0 has taken a different evolutionary path. It has grown
out of an effort to create a standardized application layer for
use with low-power, 802.15.4 [11] radio equipped hardware
platforms that supported the Zigbee software network
protocol. The Zigbee Alliance has energetically specified both
a software and hardware “ecosphere” that supports
applications in a number of key areas (e.g. device-level energy
management) using computing platforms that were known to
be sufficiently inexpensive to make their ubiquitous inclusion
in home appliances both attractive and certain. Since the
primary function of automation within the home has always
been the actual control of devices, the software model found in
the energy application specification (SEP 1.0) naturally
focused explicitly on the control of devices. With SEP’s
evolution to SEP 2.0 through the adoption of the IP protocol
stack, it became possible for this programming model to
function in wide area networks as well.

At this point in time, we feel these two DR-capable models
complement each other. OpenADR, implemented primarily
on web-base transport infrastructures, is a good fit at the
enterprise end of distribution grid operations. And, SEP 2.0,
growing out of the cost effective device control domain, is a
good fit within the home-based, device control world. While
technical advancements in both the micro-controller and
networking domains can allow each of these protocols to
extend across the entire utility to customer to device spectrum,
we feel each has a natural domain within which they are best
suited to meet application needs.

VI. MOTIVATION – DOES OPEN SOURCE MAKE SENSE?
The open source development model has been widely adopted
within the Internet community and the larger software
development world. Although the rules governing behavior
within this community take on varying forms, the general
precept of “shared responsibility for development of quality
software” is well accepted and ubiquitous across both the
academic and commercial domain. While some companies
initially viewed open source efforts as eroding the value
invested in proprietary software, over time it has been shown
that, where individual applications share common
functionality, open source programs can provide code that is
more correct and reliable than proprietary implementations.
Individual and corporate justification for actively supporting
open source projects vary from creating an increased sense of
professional “community” to allowing start-up companies to
focus on value-added portions of their product while
leveraging common open source-supported web frameworks.
Regardless of individual motivations, there can be little
argument about the success and usefulness of open source

 5

projects such as Linux and the Apache Foundation’s Tomcat
web application server in the commercial world.

However, while many facets of the current power grid
resemble the Internet, they are, in fact, very different software
environments and the question “does open source have a place
in Smart Grid” is worth addressing. The software
infrastructure of the power grid is purpose-built and, in
general, a very conservative programming environment.
Overall power grid stability and safety are paramount and
inadvertent or intentional destruction of key system elements
can have catastrophic monetary consequences. Thus, within
the power generation and distribution automation portion of
the grid, the advantages of the open source model may not be
justified.

Some areas, such as utility back office operations, are
essentially IT environments, and freely use open source
software solutions where appropriate. These business support
services, which are technically still part of the greater Smart
Grid model, may find open source tools attractive for cost and
reliability reasons. However, since they exist outside of the
utilities operations domain, they have little impact on the grid
per se.

So, what is the nature of the open source opportunity in the
DR world? It can be argued that, with advancement of the
Smart Grid initiative, some degree of automated demand
response will be required by all operating utilities within the
US and these DR systems will reach most, if not all, of their
energy customers. Successful DR systems of this scale will
use or, at a minimum, leverage proven Internet-based tools
capable of scaling to service these large markets. This is
precisely the environment in which open source tools have
already proven their value. Furthermore, since the OpenADR
architecture has evolved within and proven its capabilities in
the Internet-mediated environment, it will very likely benefit
from the attention of a developer community intent on
providing high quality, reliable web-based services.
Therefore, we believe there is both research and, potentially,
commercial value in producing an open source OpenADR
implementation and exploring and analyzing this protocol
within the wider open source and DR communities.

VII. OPEN SOURCE OPENADR GOALS
The open source OpenADR project has four primary goals.
The first of these is to provide a vehicle for educating
researchers, utilities and vendors about the OpenADR
protocol. Much of the previous work in the DR domain has
focused on direct control of customer loads. As noted above,
this DR methodology is rooted in a centralized control model
that is fundamentally different than OpenADR. Past
discussions about the suitability of OpenADR for wide-scale
deployment have made it clear that some confusion about the
basic OpenADR behavioral model still remains. We believe
that, by distributing a simple, research-quality OpenADR
server and client demonstration program, we will address
these misunderstandings through direct and meaningful

demonstration. Furthermore, by giving the wider research
community access to a simple, OpenADR software
environment, we will promote widespread experimentation by
potential OpenADR implementers.

The second goal is to provide a basic software “core” that is
capable of supporting simple OpenADR demonstrations and
pilots with a minimum amount of software development. As
noted above, our intention is to produce a “research-grade”
OpenADR server and client. In other words, there is no
intention to produce, at least at this stage of development, an
OpenADR server that is suitable for continuous, commercial
applications. However, given the state of development in the
DR domain, there are research areas that will clearly benefit
from data gained through focused pilot programs. One of our
goals is to facilitate these research activities by providing a
simple framework capable of being altered to meet immediate
research goals.

Thirdly, we want to produce an independent OpenADR
implementation code base that is suitable for future protocol
conformance testing activities. As noted above, OpenADR is
currently a published, publicly available specification
(OpenADR V1.0) and is undergoing formal standardization
process within both the OASIS [12] and UCA [13] standards
organizations. Looking forward to the successful completion
of these efforts, the OpenADR community will require a
compliance and interoperability testing framework for
verification of new, third party OpenADR implementations.
While we cannot foresee the exact outcome of these
standardization efforts, we feel this project provided an
opportunity to initiate the design of such a package.

And, lastly, we want to produce a modular OpenADR
implementation that lends itself to integration into a variety of
smart grid and energy market simulation frameworks. While
utilities and independent system operators (ISOs) have used
simulation programs to evaluate physical power distribution
designs, few such frameworks are available to evaluate large,
metropolitan-scale aggregations of energy consumers that are
responding to energy price and reliability signals. Discussions
with several utilities indicated that the usefulness of such
simulation frameworks would be greatly enhanced if they
could include modeling of auto DR signaling and response
behaviors. Our last goal is to insure that the OpenADR code
base produced within this project is sufficiently modular and
granular to allow its integration into software frameworks that
are substantially different, architecturally, from the
“application server” environment required to satisfy our other
goals.

VIII. IMPLEMENTATION SPECIFICS
As noted above, OpenADR is essentially a client/server
architecture that should easily integrate into the existing
Internet Web Service environment. We chose to implement
both the server and client portion of this project in the Java
language. While other choices were available to us (e.g.
C++), programming in the Java language enhanced the

 6

number of potential open source tools available for use in
addressing other aspects of the implementation. The
prevalence of Java in web-based software packages and the
availability of language specific tools for creating,
manipulating and binding XML documents to program
elements argues strongly for its use on the server side. On the
client side, Java environments are readily available in PC-
based systems and in many embedded Linux environments.
While we have seen a number of minimal OpenADR clients
programmed in either C or C++, we decided that a reference
Java client implementation would be of great benefit to users.

The decision to use Java as the primary implementation
language prompts the question – what is the appropriate
execution environment for a research-grade OpenADR
software implementation? Given recommendations of the
present OpenADR V1.0 specification, server functions must,
at a minimum, respond to standard Web Service requests (i.e.
REST [14]) posted by OpenADR clients. While it is possible
to compose and structure a stand-alone Java program that will
accept http connection requests, interpret Web Service-
formatted messages, and respond appropriately, open source
frameworks capable of supporting such transactions are
widely available and well supported. Java application servers,
such as Apache Tomcat [15], Jetty 16] and JBoss 17], are
widely used in both academic and commercial contexts and,
most importantly, have large followings in the software
development community. While we considered basing our
implantation on the JBoss application environment, we
decided that, in keeping with our original set of goals, the
Apache Tomcat application server was the most appropriate
open source web framework for the current software package.
It is readily available, simple to install on both Windows and
Linux environments and is generally well known in the web
developer community.

Information about participating clients, utility program rate
programs and applicable schedules is maintained in
OpenADR’s database. Regardless of the object oriented
nature of our implementation, traditional relational databases
were considered most appropriate for this role. However,
differences between popular relational databases prompted
lengthy discussions about which particular database would
prove most useful. We considered MySQL [18], Oracle [19]
and Postgres [20] as database candidates. Since, in keeping
with the open source tradition, we wanted to only incorporate
freely obtainable software components, we limited the Oracle
implementation to the freely distributed Oracle Express
package. All candidates implemented standard SQL[21] query
languages and shared features typically found in modern
databases – namely customized database table trigger
functions. However, each used different commands for initial
database configuration, table creation and user privilege
management. Discussions with back office staff from several
utilities and further discussions with vendors serving the
utility marketplace led us to ultimately chose Oracle Express.
This decision was based on the communities overall
familiarity with the Oracle command interface and by the
percieved ease of integration – even if only for pilot

demonstration purposes – with existing utility operations and
dispatch systems.

IX. DISCUSSION

A. Security
The role of security in OpenADR has several aspects. In
general, any Internet application that exchanges sensitive user
information now receives increased scrutiny from designers
viz. implementation of security features. Since OpenADR
transactions involve no direct funds exchange, it could be
considered a low security risk application. However,
OpenADR messages do convey cost saving opportunities and
malicious activities that manipulate the contents of these
messages could create “opportunity costs” that, in effect, turn
into very real utility bill differentials that must be reconciled.
Therefore, OpenADR V1.0 has specified that, at a minimum,
client/server messaging should follow best commercial web
practices for security. In practice, commercial OpenADR
DRAS systems implement Transport Layer Security (TLS
[22]) for all critical message passing operations. It should be
noted that the security measures described here exist as layers,
recommended by, but not implemented as part of, OpenADR.
Therefore, in designing an open source version of OpenADR,
we have not added an explicit security layer as the details of
this layer are outside the scope of the specification. In future
releases, we will add layered security to promote use of this
package in demonstrations with modest security requirements.
These security layers will not explicitly interact with the core
OpenADR code base.

It should also be noted that, for at least two of our motivating
guidelines, explicit security layers will prove counter-
productive. In particular, when used as part of a large
simulation framework, the presence of a security fuctions as
an explicit part of the OpenADR implementation would add
unnecessary complexity and computational overhead.
Furthermore, when using elements of this codebase as part of
certification suite, the presence of security features would be a
distraction for use case testing. Since OpenADR is a DR
messaging content specification, it contains no explicit
security behaviors. Therefore, while security issues play a
critical role in overall design of a DR system, these issues
have not role in proving the correctness of OpenADR message
content.

B. Utility Operator Interface
The OpenADR specification focuses primarily on the interface
between the utility and the consumer. Detailed use case
descriptions and messaging examples delineate exchanges
between these two entities. However, OpenADR does not
proscribe or define the process by which a utility decides to
declare DR events or the mechanism through which a utility
operator instructs the OpenADR messaging system to initiate
distribution of such events to participating clients. In practice,
these details are dictated by utility policies and, with respect to
the actual mechanism used to interact with the utilities DRAS,
ddictated by the utility’s IT environment.

 7

Therefore, our open source implementation provides a simple
interface through which an external operator can cause the
server to evaluate its present state and, if required, formulate
and emit events to clients as appropriate. Rather than include
all the required utility state information in this interface, we
assume that such information will already be present in the
OpenADR server database prior to invoking event processing.
In practice, this design closely maps onto typical utility and
ISO (Independent System Operator) architectures. Rather
than providing a very rich – and very specific – web service
interface as part of event scheduling, utility-specific sub-
systems continually update OpenADR tables with current DR
targets and potential price schedule changes. On recognition
of a need for system-wide demand reduction, an operator
requests that an event be created and distributed through a
simple server interaction.

X. CONCLUSION
The increased interest in demand response systems and the
growing influence of the Smart Grid initiative has lead to the
requirement for national standards for demand response
protocols. Given the potential scale in which such standard
protocols will operate, parallels to open source software
efforts of similar scale are apparent. We have specifically
developed an open source implementation of the OpenADR
protocol with the purpose of facilitating the analysis and
research of this protocol within the larger research and
development community. The current effort has already
promoted interactions with a number of independent
OpenADR developers and we anticipate wider collaborations
based on wider use of this open source codebase.

ACKNOWLEDGMENT
This work was sponsored in part by the Demand Response
Research Center which is funded by the California Energy
Commission (Energy Commission), Public Interest Energy
Research (PIER) Program, under Work for Others Contract
No. 500-03-026 and by the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

REFERENCES
[1] David A. Wollman, “Status of NIST’s EISA Smart Grid Efforts,” Mar.

26, 2009, Congressional Noontime Briefing, R&D Caucus. Available:
files.asme.org/asmeorg/NewsPublicPolicy/GovRelations/21405.pdf

[2] Open Source Intiative, http://www.opensource.org/
[3] Pacific Gas and Electric,

http://www.pge.com/mybusiness/energysavingsrebates/demandresponse/
adrp/

[4] Mary Ann Piette, Girish Ghatikar, Sila Kiliccote, Ed Koch, Dan
Hennage, Peter Palinsky, and Charles McParland. “Open Automated
Demand Response Communications Specification (Version 1.0)”, 2009.
LBNL-1779E. Available: http://openadr.lbl.gov

[5] PIER Demand Response Research Center, http://drrc.lbl.gov
[6] Extensible Markup Language (XML). Available: www.w3.org/XML
[7] Advanced Metering Infrastructure (AMI), Electric Power Research

Institute.Available:
http://www.ferc.gov/eventcalendar/Files/20070423091846-EPRI%20-
%20Advanced%20Metering.pdf

[8] Home Area Network (HAN) Overview, Edison Foundataion. Available:
www.edisonfoundation.net/iee/issuebriefs/PG&E_HAN_January_2009.
pdf

[9] Consumer Electronics Association, “Broadband in America: Access,
Use and Outlook”.

http://www.bizreport.com/2007/07/threequarters_of_us_households_hav
e_broadband.html#

[10] “ZigBee Smart Energy 101”, Available:
www.zigbee.org/imwp/download.asp?ContentID=16600

[11] IEEE 802.15.4, Available: www.ieee802.org/15/pub/TG4.html
[12] OASIS, www.oasis-open.org
[13] UCA International Users Group, www.ucaiug.org
[14] Representational State Transfer,

en.wikipedia.org/wiki/Representational_State_Transfer
[15] Apache Tomcat, http://tomcat.apache.org
[16] Jetty Web Server, www.mortbay.org
[17] JBoss Application Server, www.jboss.org
[18] MySQL, www.mysql.com
[19] Oracle, www.oracle.com
[20] PostgresSQL, www.postgresql.com
[21] SQL Tutorial, www.sql.org
[22] The TLS Protocol Version 1.0 (RFC 2246), Internet Engineering Task

Force, www.ietf.org/ifc/rfc2246.txt

	Pub temp cover
	Disclaimer
	IEEE_PES_OpenADR_McP_FinalVersion.pdf

